Exam 1 Chapter 1, 2 and 3.1-3.5 (without 3.4)

Multiple Choice

Answer the following multiple choice questions. Each question is worth 6 points. You may circle between 1 and 3 answers on each question. Circling 1 and getting the correct answer is worth 6 points. Circling 2 and getting the correct answer is worth 3 points. Circling 3 and getting the correct answer is worth 1 point.

1. The expression $\frac{1}{2\sqrt[5]{x^2}}$ can be simplified in which of the following ways?

(a)
$$\frac{1}{2x^{-2/5}}$$

(b) $(2x)^{-2/5}$
(c) $\frac{x^{-2/5}}{2}$
(d) $\frac{x^{2/5}}{2}$

2. Which of the following is the derivative of $\sin t \cos t$?

(a)
$$\cos^2 t - \sin^2 t$$

(b) $-\sin t \cos t$
(c) $\sin t \cos t$
(d) 1

3. Find $\lim_{x \to 1^+} \frac{1 - \sqrt{x}}{1 - x}$.

(a)
$$\infty$$
 (b) 1/2
(c) $-\infty$ (d) 0

4. On which interval does the equation $\tan x = x^2 - 1$ have a solution?

(a)
$$(-\pi/2, -\pi/4]$$

(b) $[-\pi/4, 0]$
(c) $[0, \pi/4]$
(d) $[\pi/4, \pi/2)$

5. Find $\lim_{t\to\infty} t \tan(8t)$.

$$\begin{array}{ccc} (a) \ \infty & (b) \ 0 \\ (c) \ 4 & (d) \ 8 \end{array}$$

6. Which of the following is the derivative of $\frac{\tan x}{\ln x}$?

(a)
$$\frac{\tan x/x - \ln x \sec^2 x}{\ln(x)^2}$$
(b)
$$\frac{\ln x \sec^2 x - \tan x/x}{\ln(x)^2}$$
(c)
$$\frac{\tan x/x - \ln x \sec^2 x}{\ln(x^2)}$$
(d)
$$\frac{\ln x \sec^2 x - \tan x/x}{\ln(x^2)}$$

7. Find the point (or points) where the function $f(x) = x^3 + 6x^2 - 36x + 100$ has horizontal tangent lines.

- (a) x = -2(b) there are no horizontal tangent lines (c) x = -6 and x = 2(d) x = -2 and x = 2
- 8. Suppose θ is an angle in the 3^{rd} or 4^{th} quadrant such that $\tan \theta = \sqrt{3}$. What is θ ?

(a)
$$\frac{-\pi}{6}$$
 (b) $\frac{5\pi}{6}$
(c) $\frac{7\pi}{6}$ (d) $\frac{-2\pi}{3}$

Short Answer

Answer the following questions. You must show your work to receive full credit. Be sure to make reasonable simplifications. Indicate your final answer with a box.

1. (8 points) Find all asymptotes of the function $f(x) = \frac{2x^2-2}{5x^2-40x+35}$.

2. (4 points) Use any method to find $\lim_{h\to 0} \frac{e^{x+h}-e^x}{h}$. Give at least one sentence of explanation. (Yes! That means words.)

3. (10 points) Find $\frac{dy}{dx}$, where

$$y = x^{\pi+1} - 5e^x + \ln x + 6\sin x - \frac{\cos x}{7}.$$

4. (10 points) Find the tangent line to the function $g(x) = 6\cos(x)$ at the point $x = \pi/2$.

5. (10 points) For what values of a is the function

$$m(x) = \begin{cases} a^2x - 2a & x \ge 2\\ 12x & x < 2 \end{cases}$$

continuous at every x?

- **6.** Consider the function $h(x) = \frac{x^3 + 3x^2 10x}{x^2 4}$.
 - (a) (5 points) For what values of x is h discontinuous?
 - (b) (5 points) Create the function H which is a continuous extension of h at all points where this is possible.

1. (8 points) Use the $\epsilon - \delta$ definition of limits to show that $f(x) = x^2 - 2$ is continuous at x = 3.