Exam 1

Chapter 1, 2 and 3.1-3.5
(without 3.4)

Multiple Choice

Answer the following multiple choice questions. Each question is worth 6 points. You may circle between 1 and 3 answers on each question. Circling 1 and getting the correct answer is worth 6 points. Circling 2 and getting the correct answer is worth 3 points. Circling 3 and getting the correct answer is worth 1 point.

1. The expression $\frac{1}{2 \sqrt[5]{x^{2}}}$ can be simplified in which of the following ways?
(a) $\frac{1}{2 x-2 / 5}$
(b) $(2 x)^{-2 / 5}$
(c) $\frac{x^{-2 / 5}}{2}$
(d) $\frac{x^{2 / 5}}{2}$
2. Which of the following is the derivative of $\sin t \cos t$?
(a) $\cos ^{2} t-\sin ^{2} t$
(b) $-\sin t \cos t$
(c) $\sin t \cos t$
(d) 1
3. Find $\lim _{x \rightarrow 1^{+}} \frac{1-\sqrt{x}}{1-x}$.
(a) ∞
(b) $1 / 2$
(c) $-\infty$
(d) 0
4. On which interval does the equation $\tan x=x^{2}-1$ have a solution?
(a) $(-\pi / 2,-\pi / 4]$
(b) $[-\pi / 4,0]$
(c) $[0, \pi / 4]$
(d) $[\pi / 4, \pi / 2)$
5. Find $\lim _{t \rightarrow \infty} t \tan (8 t)$.
(a) ∞
(b) 0
(c) 4
(d) 8
6. Which of the following is the derivative of $\frac{\tan x}{\ln x}$?
(a) $\frac{\tan x / x-\ln x \sec ^{2} x}{\ln (x)^{2}}$
(b) $\frac{\ln x \sec ^{2} x-\tan x / x}{\ln (x)^{2}}$
(c) $\frac{\tan x / x-\ln x \sec ^{2} x}{\ln \left(x^{2}\right)}$
(d) $\frac{\ln x \sec ^{2} x-\tan x / x}{\ln \left(x^{2}\right)}$
7. Find the point (or points) where the function $f(x)=x^{3}+6 x^{2}-36 x+100$ has horizontal tangent lines.
(a) $x=-2$
(b) there are no horizontal tangent lines
(c) $x=-6$ and $x=2$
(d) $x=-2$ and $x=2$
8. Suppose θ is an angle in the $3^{r d}$ or $4^{\text {th }}$ quadrant such that $\tan \theta=\sqrt{3}$. What is θ ?
(a) $\frac{-\pi}{6}$
(b) $\frac{5 \pi}{6}$
(c) $\frac{7 \pi}{6}$
(d) $\frac{6}{3}$

Short Answer

Answer the following questions. You must show your work to receive full credit. Be sure to make reasonable simplifications. Indicate your final answer with a box.

1. (8 points) Find all asymptotes of the function $f(x)=\frac{2 x^{2}-2}{5 x^{2}-40 x+35}$.
2. (4 points) Use any method to find $\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}$. Give at least one sentence of explanation. (Yes! That means words.)
3. (10 points) Find $\frac{d y}{d x}$, where

$$
y=x^{\pi+1}-5 e^{x}+\ln x+6 \sin x-\frac{\cos x}{7} .
$$

4. (10 points) Find the tangent line to the function $g(x)=6 \cos (x)$ at the point $x=\pi / 2$.
5. (10 points) For what values of a is the function

$$
m(x)= \begin{cases}a^{2} x-2 a & x \geq 2 \\ 12 x & x<2\end{cases}
$$

continuous at every x ?
6. Consider the function $h(x)=\frac{x^{3}+3 x^{2}-10 x}{x^{2}-4}$.
(a) (5 points) For what values of x is h discontinuous?
(b) (5 points) Create the function H which is a continuous extension of h at all points where this is possible.

Bonus Question

1. (8 points) Use the $\epsilon-\delta$ definition of limits to show that $f(x)=x^{2}-2$ is continuous at $x=3$.
